Development of the amygdalohypothalamic projection in the mouse embryonic forebrain

Abstract

The amygdalohypothalamic projection, a major component of the stria terminalis, is involved in the conduction of emotional and olfactory information integrated in the amygdala to the hypothalamus to elicit emotional reactions. Despite the extensive studies on functional aspects of the amygdaloid complex, developmental mechanisms of the amygdala and related structures are still poorly understood. To investigate the development of the amygdalohypothalamic projection in the mouse embryonic brain, carbocyanine dye was applied to the amygdala to label the growing axons anterogradely and to the hypothalamus to label the amygdaloid neurons retrogradely. The initial outgrowth of the stria terminalis was found to be as early as E11.5. The pathway crossed in a saddle over the internal capsule, another prominent connection in the developing forebrain of the mammalian embryo. Bipolar immature neurons were distributed along the stria terminalis at the telencephalo-diencephalic boundary, and the internal capsule was also surrounded by these cells. These cells expressed immunoreactivities to calretinin and the lot-1 antigen which has been shown to be involved in guidance of the developing lateral olfactory tract. Ultrastructural analysis revealed an adherens-like junction between the stria terminalis and the apposed cells, implying contact-mediated guidance. These results suggest that, in the development of the stria terminalis, the axonal outgrowth is guided by a mechanism similar to that of the developing lateral olfactory tract, a major amygdalopetal connection.

Publication
Anat. Embryol.